Put simply: digital humanists do not need to understand algorithms at all. They do need, however, to understand the transformations that algorithms attempt to bring about. If we do so, our practice will be more effective and more likely to be truly original.It then moves into one case study; the Jockers-Swafford debate of 2015, large parts of which hung on whether the Fourier transform was a black box and how it its use as a smoothing device might be understood. It's like a lot of what's on this blog, only better thought and edited.
The transformation/algorithm distinction is not a completely firm one, but I have found it extremely useful in a lot of research and teaching problems I've approached over the last year. So in addition to advertising that article for your consumption/fall syllabi production, I wanted to take the occasion to put on github a tiny little germ of a project to provide one-page, transformation-oriented introductions to basic text-analysis concepts that came out of using this thinking for a workshop on text analysis at the NIH in Bethesda, and describe what's in it. I'd love for anyone else to use it, fork it, whatever.